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Theses:

» Different requirements for data processing,
dissemination and storage apply for mass
spectrometry applied to the analysis of
proteins and proteomes.

* Proteomics Is a genomic science and
needs to develop "genomics” data
analysis/dissemination strategies



LC-MS/MS as a protein analysis tool

 Relatively low number of proteins analyzed
per experiment

« Extensive (biological, manual) validation of
data

 Projects centered in single group and
focused on specific question

e Data stored in notebook or local computer

 Reports focused on the biological meaning
of the data



LC-MS/MS as a genomic technology

e Many — ideally, all — proteins in a proteome analyzed
repeatedly

e Extensive and consistent biological or manual
validation of all data impossible

 Value of information increases if data from multiple
experiments/groups can be integrated and collectively
mined

° Proteomics is a community effort

« Data are collected and organized in relational
databases

 Whole data sets should be made accessible/published



Discussion Points

Many — ideally, all — proteins in a proteome
analyzed repeatedly, generating large
volumes of data
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Data Summary
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* 2735/6562 proteins quantified across all timepoints (42%)
* 696 proteins quantified in every experiment

« 1513 proteins quantified in at least one timepoint

+ 34,400 peptides quantified on average per timepoint

« >1 million mass spectra collected



Discussion Points

Many — ideally, all — proteins in a proteome
analyzed repeatedly, generating large volumes
of data

Current status:

. Large volumes of data are being generated to identify
relatively small numbers of proteins

. Information from prior experiments is not used, making
the process relatively inefficient

Recommendations:
 Improved strategies for more efficient data collection
and analysis are required

« To develop those, access to data is essential




Discussion Points

Extensive biological and/or manual
validation of all data impossible



Protein Identification by MS/MS

protein protein
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Output from search algorithm
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sort by search score




Threshold Model
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Difficulty Interpreting Protein
Identifications based on MS/MS

e Different search score thresholds
used to filter data

« Unknown and variable false positive
error rates

 No reliable measures of confidence



Protein Identification by MS/MS

protein protein
sample identifications

o Ll Ll Ll
MS/MS spectra

“\MJ\J”HH “\HMHHH “\\.\JJHHH “\m\”x

Systems @
Biology



Amplification of False Positive Error Rate
from Peptide to Protein Level
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Peptide Level: 50% False Protein Level: 71% False
Positives Positives



Protein ID False Positive Rate:
Control Dataset Examples

False Pos Rate (%'

2
Control Dataset

Control Datasets:
18 purified proteins vs.
18+Human (22 runs)
Halobacterium vs. Halo+tHuman
(4 runs)
Halobacterium vs. Halo+Human
(45 runs)

Data Filters:
Publ. threshold model #1
Publ. threshold model #2
Statistical model (p > 0.5)
Statistical model predicted




False Positive Error Rates among
Single-hit Proteins

Control Dataset

Data Filter 1 2 3
Publ. Threshold model #1 11% 37% 67%
Publ. Threshold model#2 14% 32% 82%

Control Datasets:
18 purified proteins vs.
18+Human (22 runs)

Halobacterium vs. Halo+tHuman
(4 runs)

Halobacterium vs. Halo+Human
(45 runs)




Serum Protein Identifications from
Large-scale (~375 run) Experiment

Data Filter #ids # non-single hits # single-hits
Publ. Threshold model#1 2257 359 1898
Publ. Threshold model #2 2742 441 2301
Statistical model, p>0.5 713 511 202

(predicted error rate: 7%)



Consistency of Manual Validation of SEQUEST Search Results
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Discussion Points

Extensive (biological, manual) validation of all
data impossible

Current status:

 Peptide and protein identifications are largely made
based on threshold model

« Manual validation is often used as “gold standard”

Recommendations:

. Develop, validate and use statistical models that
calculate accurate false positive and false negative
error rates for peptide AND protein identifications

. Discourage manual validation of spectra as “gold
standard”.

« Tools should be transparent and generally available




Discussion Points

Value of information increases if data from
multiple experiments/groups can be
integrated and collectively mined

Proteomics is a community effort

Data are collected and organized In
relational databases
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Cellular pathway Probability ASAPRatio

Mean
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Lots of data -what does it mean?



Interferon (IFN) Pathway
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GO Analysis of Interferon regulated proteins
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» Single proteomics datasets tend to
rediscover the known

» New insights can be made from the
comparison of many datasets



Data collection in proteomics
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From Peptides to Genome Annotation
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Discussion Points

 VValue of information increases if data from multiple
experiments/groups can be integrated and collectively
mined

* Proteomics is a community effort
» Data are collected and organized in relational databases

Current status:
 Very little proteomics data publicly accessible
. Publications usually only show conclusions but not data
Recommendations:
. Develop and support infrastructure for data sharing and
mining
. Make data access condition for publication




Summary

If proteomics is to truly operate as a discipline of the
genomic sciences, data processing, management and
dissemination strategies proven in other fields of
genomics must be applied. These include:

» Statistical validation of large data sets

* Providing community access to all data (not just
selected data points)

* Providing transparent tools for data processing to
community



